Polymers have made a real difference to a manufacturer’s ability to make a range of parts for every conceivable contraption known to human kind. They have enabled designers to push the boundaries of design capabilities whilst still producing parts that are functional and affordable.
It is fair to say that before polymers were discovered, the material that enabled manufacturers to make numerous types of components was metal. Like polymers, a range of metals are available but to move from the raw material to the final component requires multistage processes. Along the way, unlike polymers, a lot of the starting material does not end up in the final part. In aerospace this is known as the buy-to-fly ratio, the weight ratio between the raw material used for a component and the weight of the component itself, with most metal alloys, like Aluminium and Titanium, having high buy-to-fly ratios because of the numerous primary and secondary processes required to produce the final components. However, despite aluminium being infinitely recyclable, the less efficient manufacturing process means the majority of raw material you purchase ends up being recycled.
According to Geyer, Jambeck and Law in 2015 over 400 million metric tonnes of polymer were produced. In contrast, the global demand for the typical metals that high-performance polymers (HPP) can replace (mainly aluminium, steel, titanium, cobalt, brass and bronze), based on latest statistics from the relevant metal associations was around 4X the total polymer consumption for the same time period. Thus, there is a wide range of applications and industries where polymers, such as PEEK, can be deployed, and today roughly 20% of those replacement opportunities have been taken. So for the foreseen future there are plenty of opportunities to continue to accelerate the replacement of metal parts.
In general polymers can be segmented by performance characteristics and operating temperature range into commodity polymers (by far the largest segment by volume), engineering polymers, and high-performance polymers (HPP), which as the name suggests are polymers that have superior performance. VICTREX™ PEEK for example belongs to this latter category and sits at the top of it. It is a thermoplastic material and can be melted and reformed into a new shape without affecting its mechanical performance. PEEK (PolyEtherEtherKetone) polymers are a member of the PolyArylEtherKetone or short PAEK family of polymers and increasingly recognised as a dynamic driver for efficient applications.