VICOTE® F815 and F816Blk (Black)

VICOTE® is the brand name for the Victrex range of coatings. VICOTE Coatings are available through Victrex or its preferred coater network. The VICOTE F815 and F816Blk grades have been specifically formulated to provide a coating that gives high wear and abrasion resistance combined with excellent release properties that are retained as the coating wears. These properties are retained at high temperatures where other release coatings would potentially fail. VICOTE dispersions have a low level of extractables. Contact Victrex for further details.

VICOTE F815 NATURAL AND F816BLK DISPERSIONS

VICOTE F815 and F816Blk dispersions are aqueous based however there are small amounts of solvents present. Refer to the appropriate MSDS sheet for details.

The VICTREX® PEEK polymer contained in the VICOTE dispersions like other non-coating grades of VICTREX PEEK polymer are thermoplastic in nature and exhibit flow above the melt temperature. When processed using the correct guidelines the coatings will exhibit the excellent properties that VICTREX PEEK polymer is renowned for.

VICOTE Coatings have excellent chemical resistance. Consult the Victrex Chemical Resistance Data Base for further details.

STORAGE AND HANDLING CONSIDERATIONS

VICOTE drums should be stored in a clean dry environment and should not be stored with the lids removed as this may result in airborne dust contaminating the product, which could cause coating defects.

VICOTE dispersions will soft settle after prolonged standing. They can be re-dispersed readily by stirring of the liquid suspension. The drums can also be rolled and re-disperse to ensure homogeneity. High shear dispersing should be avoided as the wetting agent is prone to shear thinning. It is recommended that the dispersions are not allowed to freeze. Optimum storage temperature is 5°C – 25°C.

VICOTE F815 and F816Blk Coatings are packed in 20 kg polythene UN drums enclosed in a strong cardboard box with the VICOTE logo.

SUBSTRATES AND PREPARATION

VICOTE F815 and F816Blk Coatings can be applied to most ferrous and non ferrous metals. A primer is not required. Cast metals need to be de-gassed in an oven to prevent pin holes in the coating surface. Substrates should be free from grease, oils and corrosion prior to coating. Solvent de-greasing and grit blasting with aluminium oxide with final solvent wash should ensure a suitable surface for coating. Note: phosphate pre treated substrates are not recommended for VICOTE grades as the high processing temperatures required for processing can result in de-lamination of the coating.

SPRAYING

A conventional gravity fed spray gun with a nozzle size between 0.7 and 1.8mm has been found suitable for applying VICOTE dispersions. Edges of components should be sprayed first before applying a complete coating. An air pressure to the gun of between 35 and 50 psi has been found to be a suitable spray pressure. Spray at right angles to the substrate wherever possible. The spray gun and cup can be cleaned with water after use.

PROCESSING

For general processing information consult the VICOTE dispersion coating guides. Coated parts should be dried in air for 5 minutes then dried in an oven for 5 minutes at 120°C before placing in an oven at 400°C to melt and fuse the coating. By following the processing guide smooth coatings should be achievable. Because VICOTE Coatings are semi-crystalline thermoplastics, as with all these types of products, shrinkage will take place when the coating cools. Depending on the mass of the substrate, coating thickness and rate of cooling will determine the amount of shrinkage.

Normally processed and cooled coatings should result in crystalline coatings which should not require further post processing treatment. However an increase in crystallinity may enhance certain properties such as wear and scratch resistance. To anneal the coating the part should be placed in an air circulating oven and the temperature raised at 10°C per minute to 250°C and held at that temperature for 30 minutes to 1 hour.

With coated parts that are subject to a high service temperature it may be beneficial to anneal the parts at
10°C above the maximum service temperature to prevent further volume change of the coating. Note: The colour of the final coating when using VICOTE F815 may depend on the substrate. For example VICOTE Coatings processing temperatures will turn some steels blue and may impart a blue/grey colour to the final VICOTE Coating.

SAFETY PRECAUTIONS
Before applying VICOTE dispersions, read the appropriate Material Safety Data Sheet (MSDS) and the processing guide, available from Victrex plc.

VICOTE F815 and F816Blk Coatings contain fluoropolymers which must only be applied where Local Extract Ventilation (LEV) is available with the gases removed completely from the work area. The hot gases given off during melt processing can cause flu like symptoms. Care should be taken not to inhale such gases; also contact of the polymer with tobacco products should be avoided. Washing of hands and good housekeeping are a pre requisite before and after handling these products. Note: these products are not for human implantation.

FDA
Materials and articles manufactured from VICOTE F815 and F816Blk comply with the compositional requirements of regulation 21 CFR 175.300 for resinous and polymeric coatings of the Food and Drug Administration (FDA) of the United States of America. Regulation 21 CFR 175.300 further specifies that the finished coated part which is in contact with food is subject to extractive limitations. Compliance with any applicable extractive limits can only be demonstrated by testing carried out on the finished article.

Typical Property Data for F815 and F816Blk - Coating Film Thickness 30 – 50µm

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Units</th>
<th>F815</th>
<th>F816Blk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Hatch</td>
<td>BS EN ISO 2409</td>
<td>Rating 0-5</td>
<td>0 - mild steel</td>
<td>0 - mild steel</td>
</tr>
<tr>
<td>Adhesion</td>
<td></td>
<td>0 - aluminium</td>
<td>0 - stainless steel</td>
<td>0 - stainless steel</td>
</tr>
<tr>
<td>Direct Impact</td>
<td>BS EN ISO 6272 Part 1 (pass criterion)</td>
<td>Height (m)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight (kg)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indentation depth (mm)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Konig Hardness*</td>
<td>BS EN ISO 1522</td>
<td>seconds</td>
<td>122</td>
<td>116</td>
</tr>
<tr>
<td>Coefficient of Friction</td>
<td>ASTM G 133 Using 250N Load</td>
<td>µm @ 10 min.</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

* Minimum coating thickness required for this test was 30µm. Coatings tested were between 40 and 50µ.