VICTREX™ PEEK POLYMER 381G ## **General Information** ### **Product Description** High performance thermoplastic material, unreinforced PolyEtherEtherKetone (PEEK), semi crystalline, depth filtered granules for specialty extrusion processes, standard flow, colour natural/beige. Wire coating, extrusion of filaments, minitubes, films. Chemically resistant to aggressive environments, suitable for sterilization for medical and food contact applications. | Material Properties | M!137 1 | 11 | Test Method | |--|---------------|-------|-----------------| | Physical Phy | Nominal Value | | | | Density (Crystalline) | | g/cm³ | ISO 1183 | | Spiral Flow ¹ | 12.0 | cm | Internal Method | | Molding Shrinkage ² | | | ISO 294-4 | | Across Flow | 1.3 | | | | Flow | 1.0 | | | | Water Absorption (Saturation, 23°C) | 0.45 | | ISO 62 | | Water Absorption - Saturation (100°C) | 0.55 | % | ISO 62 | | Mechanical | Nominal Value | Unit | Test Method | | Tensile Modulus (23°C) | 4000 | MPa | ISO 527-1 | | Tensile Stress (Yield, 23°C) | 98.0 | MPa | ISO 527-2 | | Tensile Strain (Break, 23°C) | 45 | % | ISO 527-2 | | Flexural Modulus (23°C) | 3800 | MPa | ISO 178 | | Flexural Stress | | | ISO 178 | | 23°C ³ | 165 | MPa | | | 3.5% Strain, 23°C | 125 | MPa | | | 125°C | 85.0 | MPa | | | 175°C | 19.0 | MPa | | | 275°C | 12.5 | MPa | | | Compressive Stress | | | ISO 604 | | 23°C | 125 | MPa | | | 120°C | 70.0 | MPa | | | mpact | Nominal Value | Unit | Test Method | | Charpy Notched Impact Strength (23°C) | 6.0 | kJ/m² | ISO 179/1eA | | Charpy Unnotched Impact Strength (23°C) | No Break | | ISO 179/1U | | Notched Izod Impact Strength (23°C) | 7.0 | kJ/m² | ISO 180/A | | Unnotched Izod Impact Strength (23°C) | No Break | | ISO 180/1U | | Hardness | Nominal Value | Unit | Test Method | | Shore Hardness (Shore D, 23°C) | 84.5 | | ISO 868 | | Thermal | Nominal Value | Unit | Test Method | | Deflection Temperature Under Load | | | | | 1.8 MPa, Unannealed | 152 | °C | ISO 75-2/Af | | 1.8 MPa, Annealed ⁴ | 160 | °C | ISO 75-2/A | | Glass Transition Temperature | | | ISO 11357-2 | | Onset | 143 | °C | | | Midpoint | 150 | °C | | # **VICTREX™ PEEK POLYMER 381G** Cylinder Zone 2 Temp. Cylinder Zone 3 Temp. Cylinder Zone 4 Temp. Cylinder Zone 5 Temp. | Thermal | Nominal Value | Unit | Test Method | |---------------------------------------|---------------|---------|----------------| | Melting Temperature | 343 | °C | ISO 11357-3 | | CLTE - Flow | | | ISO 11359-2 | | < 143°C | 45 | ppm/K | | | > 143°C | 120 | ppm/K | | | CLTE - Average | | | ISO 11359-2 | | < 143°C | 55 | ppm/K | | | > 143°C | 140 | ppm/K | | | Thermal Conductivity | | | ISO 22007-4 | | 23°C ⁵ | 0.29 | W/m/K | | | 23°C ⁶ | 0.32 | W/m/K | | | RTI Elec | 260 | °C | UL 746B | | RTI Imp | 180 | °C | UL 746B | | RTI Str | 240 | °C | UL 746B | | Electrical | Nominal Value | Unit | Test Method | | Volume Resistivity | | | IEC 60093 | | 23°C | 1.0E+16 | ohms·cm | | | 125°C | 1.0E+15 | ohms·cm | | | 275°C | 1.0E+9 | ohms·cm | | | Dielectric Strength | | | IEC 60243-1 | | 0.0500 mm | 190.0 | kV/mm | | | 2.00 mm | 23.0 | kV/mm | | | Dielectric Constant | | | IEC 60250 | | 23°C, 50 Hz | 3.20 | | | | 200°C, 50 Hz | 4.50 | | | | Dissipation Factor (23°C, 1 MHz) | 3.0E-3 | | IEC 60250 | | Comparative Tracking Index | 150 | V | IEC 60112 | | lammability | Nominal Value | Unit | Test Method | | Glow Wire Flammability Index (2.0 mm) | 960 | °C | IEC 60695-2-12 | | Fill Analysis | Nominal Value | Unit | Test Method | | Melt Viscosity (400°C) | 300 | Pa∙s | ISO 11443 | | Typical Processing Information | | | | | Extrusion | Nominal Value | Unit | | | Drying Temperature | 120 to 150 | °C | | | Drying Time | 3.0 to 5.0 | hr | | | Hopper Temperature | < 100 | °C | | | Cylinder Zone 1 Temp. | 350 | °C | | | | | | | 355 °C 360 °C 365 °C 370 °C ## VICTREX™ PEEK POLYMER 381G #### **Extrusion Notes** Mould Temperature: 170°C to 200°C Runner: Die / nozzle >3mm, manifold >3.5mm Gate: >1mm or 0.5 x part thickness Important notes: - 1) Processing conditions quoted in our datasheets are typical of those used in our processing laboratories - Data for mould shrinkage should be used for material comparison. Actual mould shrinkage values are highly dependent on part geometry, mould configuration, and processing conditions. - Mould shrinkage differs for along flow and across flow directions. "Along flow" direction is taken as the direction the molten material is travelling when it exits the gate and enters the mould. - · Mould shrinkage is expressed as a percent change in dimension of a specimen in relation to mould dimensions. - 2) Data are generated in accordance with prevailing national, international and internal standards, and should be used for material comparison. Actual property values are highly dependent on part geometry, mould configuration and processing conditions. Properties may also differ for along flow and across flow directions. Detailed data available on our website www.victrex.com or upon request. #### **Notes** Mold Temperature: 170°C, Melt Temperature: 370°C, 1.00 mm 370°C nozzle, 170°C tool 4 200°C/4h 5 Average ⁶ Along flow Revision Date: 2024 This information is provided "as is". It is not intended to amount to advice. Use of the product is at the customer's/user's risk. It is the customer's/user's responsibility to thoroughly test the product in each specific application to determine its performance, efficacy and safety for each end-use product, device or other application and compliance with applicable laws, regulations and standards. Mention of a product is no guarantee of availability. Victrex reserves the right to modify products, data sheets, specifications and packaging. Victrex makes no warranties, express or implied (including, without limitation, any warranty of fitness for a particular purpose or of intellectual property non-infringement) and will not be liable for any loss or damage of any nature (however arising) in connection with customer's/user's use or reliance on this information, except for any liability which cannot be excluded or limited by law. This document may be modified or retracted at any time without notice to the customer/user. Victrex Manufacturing Limited (or another member of the Victrex group) is the owner or the licensee of all intellectual property rights in and to this document including the following trademarks, VICTREX, INVIBIO, JUVORA, APTIV, 450G, PEEK-OPTIMA, SHAPING FUTURE PERFORMANCE, LMPAEK, TRIANGLE (Device). All rights are protected by intellectual property rights including copyright under relevant national and international intellectual property laws and treaties. All rights reserved. Copyright © Victrex Manufacturing Limited 2023.